Substrate vision statement

Google docs version

Jonathan Edwards

What is a substrate?

| define a Substrate as:

A complete and self-sufficient programming system,

with a persistent code & data store,

providing a direct-manipulation Ul on that state.

Supports live programming.

Programming & using are on a spectrum, not distinct.

Conceptually unified — not a “stack”.

Summarized as a slogan: a WYSIWYG document, DB, & PL in one.

The canonical examples of a substrate are Smalltalk and LISP systems. HyperCard and Flash
were much-beloved beginner-friendly substrates. Spreadsheets are by far the most successful
substrate, and an inspiring existence proof that alternative programming experiences are
possible. Webstrates construct a substrate in the web browser, though with a different definition:

“We define shareable dynamic media as collections of information substrates (or
substrates for short). Substrates are software artifacts that embody content,
computation and interaction, effectively blurring the distinction between documents
and applications.”

What are the benefits?

Building applications as documents/images provides a more consistent user experience
and a simpler developer experience.

There is a gentle progression from user to developer.

Beginners can quickly build non-trivial applications, and easily become competent.The
parade of no-code/low-code tools attests that this need is still unmet.

Less code is required because inessential impedance mismatches are dissolved.

The programming experience is improved by having a small set of tools working
throughout the substrate, rather than specialized tools for each specialized technology in
a stack.

Live programming and ubiquitous observability makes it easier to understand, debug,
and modify code.

The confidence of working in a human-scale world that is coherent and knowable.

https://docs.google.com/document/d/1lusMaZXnTsZugXYx94MQtHIkv7k7Q5hjL7YCHxVOfDA/edit?usp=sharing
https://webstrates.net/project/publications/
https://dl.acm.org/doi/10.1145/2807442.2807446
https://en.wikipedia.org/wiki/No-code_development_platform
https://en.wikipedia.org/wiki/Low-code_development_platform

What are our major research problems?

e Can a substrate be pluralistic? Related to work on integration domains, component
models, and malleability.
Can the stack actually be unified or does it reflect essential specializations?
Substrates have been built upon dynamically typed PLs. Could a statically typed PL
serve instead?

e Substrates have been built upon PLs (Smalltalk/LISP) and Uls (the browser). How about

building upon a DB instead?

Edit calculi (see my personal research statement).

Ul for navigating the substrate: inspector windows, outline, zoomable canvas, etc.

Provenance and observability.

Programming by Example.

Modes of collaboration: multiplayer, git, and beyond.

Substrate as an ecosystem: libraries, packages, and DLC.

Lifting Unix or the browser into a substrate.

Interoperating with the mainstream: calling/serving HTTP APlIs, reading/writing standard

file formats.

What is the role of LLMs? Will they obsolete the need for substrates?

What is a “killer app” that justifies substrates?

How do we evaluate our results? See UIST Author Guide.

Where do we regularly meet, publish, and present?

What do we seem to disagree about?

e What kind of user are we targeting?
e Should a substrate include a full programming experience?
e Should a substrate be self-contained or can it expose underlying standard tech?

Are we even a field?

To be a field of research there should be a productive exchange of ideas. We should be citing
each other as related work, and extending or critiquing each other’s ideas. History indicates that
progress accelerates when there is a healthy mix of competition and collaboration. To foment
that interaction it helps to have a regular meeting place.

What I'd like to see result from this workshop.

Identifying research problems and disagreements.

Defining one or more canonical examples like TodoMVC to compare substrates.
Publishing a report of the meeting, like the 1968 NATO SE conference.

Creating a Wikipedia page for Software_Substrate citing our report.

Planning to meet again, perhaps a one-off like Dagstuhl, or an annually recurring event.
Inflaming rivalries and alliances!

https://uist.acm.org/2025/author-guide
https://www.scrummanager.com/files/nato1968e.pdf

Personal Research Statement

[These ideas have been the subject of many discussions with Tomas Petricek.]

Who is the user? My target users are the beginners and non-technical people that embraced
HyperCard, and the “power-users” of spreadsheet fame, but who need more power and
generality. | want to give them the power of Smalltalk without losing the user-friendliness and
“conviviality” of HyperCard and spreadsheets.

Who isn’t the user? | am not targeting users like myself, nor current professional programmers. |
do not want to build a “tool for thought” for intellectuals. | would rather build a “tool for getting
stuff done” by ordinary people.

I make some opinionated design choices:
e Focus on data first. Users care more about data than code.
e The data model unifies key features of documents, relational DBs, and PLs.
e Static typing to benefit the PX and UX, schema change for flexibility.
e Built-in user-friendly distributed version control.

The benefit of a unified data model is to avoid the infamous impedance mismatches creating
much complexity when shuttling information between the DB, PL, and Ul. My experiments have
converged on a model like that of statically typed FP languages: a tree of records, sums,
(homogeneously typed) lists, and atomic values except that:
1. Data is mutable.
2. Every edge of the tree (record fields, sum components, list elements) has an internally
generated globally unique permanent ID.
3. There are cross-links in the tree, defined as a path of IDs from the root, subject to certain
static and dynamic constraints.
4. Type/schema change is a first-class operation.

To establish a solid theoretical foundation | am exploring an Edit Calculus. Generally speaking
an edit calculus formalizes the interaction between a user and a stateful system, where edits are
operations mutating the state. This particular edit calculus originated by asking how a substrate
could be statically typed? Changing a data type must simultaneously adapt any instances of that
type, called schema migration in DBs. The problem is that you can’t tell how to migrate the data
just by comparing types before and after. For example, was a field moved or was it deleted and
a new field inserted? It is necessary to capture the user’s intention as they interactively edit the
type. | formalize this with a set of edit operations that are surfaced in the Ul to capture the
intention of a type change and accordingly migrate instances.

But beyond schema migration the edit calculus turns out to also enable new modes of
collaboration. | generalize the theories of Operational Transformation (OT) and Convergent
Replicated DataTypes (CRDTSs) to support collaboration like that in distributed version control
systems (DVCS). An edit calculus over a data model not only defines what the edits do, but also
makes rules for how an edit migrates forwards or backwards through other edits so as to
preserve the user’s original intention. From these rules we can generate analogs of DVCS

capabilities: diffing, reverting, merging, and cherry-picking. Unlike traditional DVCS systems like
git these capabilities:

o

Integrate changes to code, data, and types/schema.

Operate to preserve intentions rather than concrete differences.

Span multiple modes of collaboration, from traditional transactions to multi-player collab
to loosely coupled version control.

Function in an open world of documents, not a bounded repository.

Present a coherent conceptual model abstracting from the implementation.

Provide a feature-complete GUI.

Collaboration is a relatively new feature for substrates. The classic systems focused on (and in
large part invented) the personal computing experience. | am betting that the edit calculus can
provide collaboration capabilities that not only match but exceed those of mainstream
programming tools. Winning that bet would reframe the narrative: instead of substrates being
beginner versions of “real programming” they are a new technology with unique benefits for a
different audience. Eor example end-user merging of document variants. Could a substrate like
Notion/Airtable with end-user programming and next-gen version control be a killer app?

My research prototype is called Baseline. Progress has been reported in: Version Control for
Structure Editing; Managed Copy & Paste; Operational Version Control; DB usability: as if.

There are still major unsolved research problems:

| haven’t worked out transactional and multiplayer modes.

I haven'’t found a clean algebra of edits on the data model comparable to relational
algebra. Maybe the model is not quite right yet.

The migration rules currently struggle with duplication and irreversible edits. These
situations clash with my intuition that the migration rules should satisfy certain symmetry
properties to be correct. Something has to give.

I need an executable specification language for the migration rules.

I need to prove or property-based-test some notion of correctness for the edit calculus.
Data comes first but ultimately there needs to be an embedded programming language
that can at least do queries. My vision is to extend the edit calculus into a full-fledged PL
with novel capabilities, including my previous experiments on Subtext. The fallback is to
use a conventional PL design.

Much of the work so far has been iterating on the UX of version control on structured
data. There is much work left to do.

https://alarmingdevelopment.org/?p=1669
https://arxiv.org/abs/2110.08993
https://arxiv.org/abs/2110.08993
https://alarmingdevelopment.org/?p=1653
https://vimeo.com/944945281/536e1e0d31
https://www.hytradboi.com/2025/3b6de0f0-c61c-4e70-9bae-cca5a0e5bb7b-db-usability-as-if
https://www.subtext-lang.org

kkkkkkkkkhhkkkkhkkkkkkkkk PAPER 3 kkkkkkkhkhkkkkhkhkkkhkhkkkkkk

AUTHORS: Jonathan Edwards
TITLE: Substrate vision statement

++++++++++ REVIEW 1 (Gilad Bracha) +++++++++

| like the definition of substrate. It is more precise and prerscriptive than others - which has pros and cons. | do feel
a bit ambivalent about the "not a stack' requirement. Even in a conceptually integrated system, there will be layers:
compilers, basic tooling like debuggers and code browsers, Ul frameworks, etc. They just need to be open and
malleable and made of the same "stuff" (same PL, bytecode etc).

Overall, very good coverage of topics and issues. Below are some of my concerns/reservations.

| confess that | personally have never been a fan of databases. Programming environments should subsume them,
not become them. To paraphrase Dan Ingalls: A database is a response to PL failures (wrt persistence and data
management) - there shouldn't be one.

Collaboration/local first is a major topic. | admire your insistence on developing a theory up front - but | feel that
theories come later, after some working systems.

Al is mentioned in passing, but to me it is the largest issue of all. The justification for improvements in programming
will be in how they help manage the use of Al; if they reduce cognitive load for people, they may well reduce it for Al
as well. And they must help manage Al behavior (say by testing and verification).

The tension between "standard tech” and a clean pure approach is evident in several submissions. It's a trade-off. It
is a test of design how you pull it off, but also constrained by your available resources. We typically have very little
resources in this area, and so are pushed toward pragmatics. The results are less than ideal. For example, | find
that using HTML as the markup language is very much a double-edged sword. | chose that route, and am far from
certain if it was the right choice. Yet nothing else is adequate at the moment; markdown is not nearly powerful
enough. Perhaps defining a clean markup language is a possible subgoal?

A similar tradeoff occurs at the PL level. Many opt for JavaScript. Here, | cannot compromise.

Lastly, don't you find that using EasyChair is an admission of failure? If we cannot produce something much better
than EasyChair for our own use, what's the point? Surely some dogfooding should also be a subgoal as well.

++++++++++ REVIEW 3 (Tomas Petricek) +++++++++

The statements combines general observations on software substrates with an outline of a more specific personal
research agenda. Separating these two is a good move as they are often somewhat interleaved in other vision
statements (and so it is harder to separate more general points from specific research interest).

The definition of a "Substrate" in the vision is interesting, but seems to be quite specific. | think it would be
interesting to see how we can extract some more general description (or perhaps, something that characterizes the
notion in some way that does not involve listing specific features?) Finding a definition is certainly harder than |
thought!

The vision statement is also representative of a couple of "modernist" submissions that propose a new system - a
substrate that will "take over the full stack" and replace it with something sensible. I'm personally also on this side of
the research spectrum, but I'm very curious to see how this can be combined with the more "post-modernist"
approaches based on existing software ecosystems. It seems that for the "substrates movement" to succeed, it is
crucial that we find a way to reconcile the two research directions - learn from each other and advance. (Perhaps,

the "modernist" visions can be seen as being a bit like "formal PL research" that ignores practical concerns, but can
explore ideas in a more pure form, whereas the "post-modern" approaches see how to actually implement systems
that work in practice?)

Regarding the specific research vision - there are a couple of submissions that focus on some kind of
programmable document substrate. Perhaps one outcome of the meeting could be some sort of analysis of design
considerations for such systems? This is certainly something I've thought about too! (But there is also Ampleforth,
etc.)

++++++++++ REVIEW 4 (Camille Gobert) +++++++++

This statement provides an overview of substrates as a research theme: it proposes a definition with key
characteristics, discusses benefits and challenges of thinking in terms of substrates and questions if and how we
should make a research field out of it. It then presents the direction that the author has started exploring: their focus
on non-programmers who need programming, their technical choices/preferences (such as bringing easy-to-use
version control everywhere and UUIDs for every data structures) and their attempt to formalise software evolution in
the form of an _edit calculus_.

The list of items that define a substrate is very clear, and it would be very helpful to conclude the workshop with
such a precise definition. That being said, | personally agree with Basman's statement: to me, several of these
properties are desirable rather than mandatory. In particular, | fear that "a persistent code & data store" might mean
that many substrates constitute information silos, which might only be viewed and manipulated to the substrate's UI,
whereas | think that a substrate might be a "view" of information it does not necessarily contain (but perhaps that
invalidates the point about not being a stack?)

| also really appreciate all the meta-level questions raised in this statement. They might constitute a useful guideline
to steer the actual workshop! The diversity of the statements submitted to the workshop makes me question
whether we should be a single "research field", in particular because we might be interested in very different
aspects of research on substrates, with different methods and related communities (for example, how to implement
them vs. how to evaluate our interaction with them). Maybe we could start by defining the concept and leaving each
community (PL, HCI, etc.) appropriate the concept?

Furthermore, this statement, along with others (such as Dubroy's), seem to point out that we need to define
who/what substrates are for. | second this. Could we even go further and make the notion more plural? Although the
workshop talks about "software substrates", some statements focus on the role of substrates for Al whereas others
focus on low-level OS concepts and data structures. Moreover, previous work from Beaudouin-Lafon and Mackay
introduce other types of substrates, such as information and interaction substrates (as mentioned by, e.g., Basman,
Klokmose, Trividic and myself). Is there something common to all of these views on substrates? Are there
systematic differences that would justify creating multiple families of substrates, with different purposes (e.g.,
interaction vs. computation), which may eventually be studied by different communities?

++++++++++ REVIEW 5 (Patrick Dubroy) +++++++++
This is a much more restricted vision of what a substrate is than the definition | have in my head!
What do you think the benefits are of this relatively tight, prescriptive vision of substrates?

Interesting that you also look to UIST for inspiration. In my own vision statement, | very nearly described my idea of
what the field of Substrate Studies might look like as, "What UIST used to be". It may be interesting to discuss some
of the critiques of the UIST research culture (Landay's "I'm done with CHI/UIST" and buxton/greenberg come to
mind) and ask ourselves questions like: How do we avoid these problems? And, what makes us different?

I love idea of identifying canonical examples! | suspect the process of defining these would also help elucidate our
definition of "substrate".

| also like the idea of producing a report of the meeting...and optimistically think I'd also enjoy meeting again. :-)

To your personal vision statement:

- | appreciate how you begin by answering who it's for. I'd like to see more research do this. It also connects with my
own suggestion that defining the purpose of a substrate should be an important value in this nascent field. I'd
incorporate your angle and say that we should always answer the what AND who.

- Your discussion of the edit calculus is a good example/argument for the holistic perspective of substrates as a
field, and why the isolated fields of databases, PL, and HCI aren't perhaps sufficient .

